
Accelerated Unmixing: A Heterogeneous
Computing Approach to fastICA for

Multi-Channel EEG Analysis
Sophia L. Ramirez1∗ Nikolai Petrov2† Wei-Han Zhang3‡

Aadarsh Patel4§ Elena Kostadinova5¶

April 9, 2025

Abstract

High-density electroencephalographic (EEG) systems are utilized in
the study of the human brain and its underlying behaviours. However,
working with the EEG data requires a well-cleaned signal, which is of-
ten obtained using independent component analysis (ICA) methods. The
longer the calculation time for these types of algorithms is, the more data
is obtained. This paper presents a hybrid implementation of the fastICA
algorithm that uses parallel programming techniques (libraries and exten-
sions of the Intel processors and CUDA programming), which results in a
significant acceleration of execution time on selected architectures.

Keywords— ICA, EEG, BLAS, MKL, OpenMP, Intel Cilk Plus, CUDA

1 Introduction
EEG systems are commonly used in research on brain function as well as to investigate
the neural basis of behaviour or cognition. Unlike the other brain imaging techniques
such as functional magnetic resonance imaging (fMRI) or positron emission tomogra-
phy (PET), which have a relatively low spatial resolution, high-density EEG systems
can provide an accurate view of brain activity, with an electrode resolution of up to
several hundred sensors. These systems have a wide range of applications in such fields
as neuroscience, psychology, and medicine. However, thorough cleaning of the signal
of artifacts (parts of the signal that do not originate from the brain) is crucial for its
further analysis, however, this process can be time-consuming [12, 2, 21]. Additionally,
manufacturers of EEG systems do not always meet the expectations of researchers and

∗slramirez@ucsd.edu
†n.petrov@kurchatov.ru
‡whzhang@tsinghua.edu.cn
§aadarsh.patel@intel.com
¶e.kostadinova@tu-sofia.bg

1

biuro
Notatka
Informacje na stronie tytułowej zgodnie z layotem (wzorzec)
W żywej paginie tytuł i numer czasopisma:
COMPUTER SCIENCE • 25(1) 2025
W prawym górnym rogu numer DOI:
https://doi.org/10.7494/csci.2025.25.1.1234

biuro
Notatka
Abstract, keywords, citation, copyright zgodnie ze wzorcem

the methods available in their tools are not satisfactory enough. The most frequently
used methods of signal purification are ICA-type algorithms [8, 11, 19, 36] and they
are most often available in other external programs, not adapted to larger batches of
data. ICA is a powerful tool for analyzing and interpreting complex data sets and
has a wide range of applications in such fields as machine learning or data mining.
However, due to the iterative nature of ICA-type algorithms, their computation time
can be daunting. For example, for a 256-electrode EGI system with 1000 Hz sampling
[30], it can take several hours to process a 10-minute study. This paper describes
an implementation that accelerates these calculations by exploiting the capabilities
of multi-core architectures. Initially, the implementation was based on parallel calcu-
lations on CPU cores using the Intel processors, and over time it was enriched with
matrix calculations using the CUBLAS library, which is available through program-
ming in CUDA for the NVIDIA graphics cards [17, 15, 16, 18]. The paper presents
improvement that transfers more calculations to the graphics card, thus reducing the
calculation time even further. The calculation time obtained in this way was compared
with the implementation time without the CUDA support (see Fig. 1).

Figure 1: 345-electrode cap in EEG environment

2 Related Work
The fastICA algorithm [19] has become a cornerstone technique for blind source sepa-
ration in EEG signal processing due to its computational efficiency and reliable perfor-
mance. Since its introduction, numerous studies have explored various optimization
strategies to enhance its performance, particularly for high-density EEG data process-
ing.

2

biuro
Podświetlony

2.1 Independent Component Analysis for EEG
Independent Component Analysis (ICA) has been widely adopted for EEG signal pro-
cessing, particularly for artifact removal and source separation [8, 11]. The application
of ICA in biomedical signal processing has been extensively studied [36], with various
implementations tailored for EEG data analysis. Hyväarinen and Oja [20] provided
a comprehensive overview of ICA algorithms and applications, establishing a founda-
tion for subsequent optimization efforts. In the context of high-density EEG systems,
which can record from up to 256 electrodes simultaneously [30], the computational
demands of ICA become substantial, necessitating efficient implementations.

Wojcik et al. [38, 40, 39] demonstrated the clinical relevance of advanced EEG
analysis techniques for psychiatric disorders, highlighting the need for computationally
efficient methods that can process high-dimensional data in reasonable time frames.
These applications have driven research toward optimizing ICA algorithms for both
accuracy and computational efficiency.

2.2 CPU-Based Optimizations
Several studies have focused on CPU-based optimizations for ICA algorithms. Gajos-
Balińska et al. [16, 17] investigated parallel implementations of ICA for EEG signals,
demonstrating significant performance improvements through effective parallelization
strategies on multi-core architectures. Their work on performance optimization of
ICA algorithms for EEG data established benchmark performance metrics for CPU
implementations.

The utilization of Intel’s advanced vector extensions (AVX) has been explored for
various computational tasks, with Rahman [33] providing a comprehensive guide to In-
tel Xeon Phi architecture and tools for application developers. This architecture offers
substantial potential for accelerating matrix operations common in ICA algorithms.
Similarly, Szustak et al. [35, 34] demonstrated the effectiveness of performance-
portable parallel programming across shared-memory platforms with modern Intel
processors, establishing approaches that could be adapted for ICA implementations.

2.3 Hybrid CPU-GPU Implementations
The potential of hybrid CPU-GPU architectures for accelerating signal processing al-
gorithms has been increasingly recognized. Gajos-Balińska et al. [18] specifically ad-
dressed the cooperation of CUDA and Intel multi-core architecture in the independent
component analysis algorithm for EEG data, representing one of the most relevant
precursors to our work. Their study demonstrated the feasibility of distributing ICA
computations across heterogeneous computing resources but did not fully optimize the
workload distribution for high-density EEG data.

Lastovetsky et al. [23] presented a model-based optimization approach for kernel
execution on Intel Xeon Phi through load imbalancing, which provided valuable in-
sights into workload distribution strategies for heterogeneous computing environments.
While not specifically focused on ICA or EEG processing, their approach informed the
workload distribution strategy developed in our work.

3

3 Our Methodology
In this work, we created a data set and proposed a system for detecting NLI in Ara-
bic sentences where the target labels were entailment, contradiction, and neutral (no
semantic relationship). Our system consists of three main parts: text pre-processing
(cleaning, tokenization, stemming), feature extraction (contradiction feature vector
and language model vectors), and the machine-learning model. Figure 2 shows our
experimental schema. We will discuss each step in detail in the following subsections.

Figure 2: Our experimental schema

3.1 Our Data Set
To the best of our knowledge, there is no available Arabic three-way natural lan-
guage inference (NLI) data set. In order to build our data set, we started by trans-
lating two English RTE data sets: the SICK data set [26] (which was used in Se-
mEval_2014_Task1),1 and the PHEME data set. The SICK data set consisted of
10,000 English sentence pairs, each annotated for relatedness in meaning and en-
tailment relationship, while the PHEME data set contained 5400 RTE annotated
pairs from social media. We named these automatically translated Arabic data sets
Ar_SICK and Ar_PHEME, respectively. After automatically translating the two
data sets, we selected a subset of the annotated pairs and manually corrected their
translations. We augmented this subset with manually translated/annotated pairs
from pre-existing sources. Our final Arabic natural language inference (NLI) data set2

(ArNLI) contained 6366 pairs that were divided as 1932 entailment, 1073 contradic-
tion, and 3361 neutral. The data set was collected as follows:

•5948 pairs of AR_SICK data set sentences that were semi-automatically trans-
lated and corrected (1714 entailment, 895 contradiction, and 3339 neutral pairs);

1semeval2014 task1 2014 https://alt.qcri.org/semeval2014/task1
2ArNLI https://github.com/Khloud-AL/ArNLI

4

biuro
Podświetlony

biuro
Notatka
Lista wyliczeniowa zgodnie z layoutem (próbka wzorcowa)

•312 pairs of ArbTEDS corpus3 from which we had to re-annotate its sentence
classes (entails, not-entails) into the three-way RTE classes that were considered in
this study (194 entailment, 113 contradiction, and 5 neutral pairs);

•35 pairs of Stanford real-life contradiction corpus [10], which was manually
translated (0 entailment, 35 contradictions, and 0 neutral pairs);

•71 pairs of manually annotated sentences (collected from online websites teach-
ing Arabic contradiction, poems, idioms, and paraphrased pairs of Ar_PHEME data
set) with 24 entailments, 30 contradictions, and 17 neutral pairs.
The key statistics of our created data set (ArNLI) are shown in Table 1.

Table 1: Key statistics of ArNLI data set

Data Size
Training pairs 5092
Testing pairs 1274
Avg. Sentence Length in tokens
Hypothesis 6.623
Premise 7.246
Max. Sentence Length in tokens
Hypothesis 26
Premise 57

3.2 Text Preprocessing
In this step, we first tokenized the sentences and removed all of the punctuation marks.
To extract the morphological units, we used Snowball Stemmer (which is also known
as the Porter2 stemming algorithm) Table 2 presents examples of each step in pre-
processing stage.

3.3 Feature Extraction
In our proposed model, we used different types of features: named entity features,
WordNet::Similarity features, special stopword feature, and number, date, and time
features. We used different language models such as TFIDF, n-grams, and word
embeddings.

Table 3 demonstrates the mean and standard deviation statistical results of 100
independent simulations with 1000 iterations each for all of the algorithms on the Ap-
pendicitis data set. The results showed that the proposed algorithm provided the best
mean result across all performance metrics as compared to the comparative algorithms.
Moreover, the statistical test also confirmed the superior statistical performance of our
proposed algorithm when compared to the JAYA, PSO, SCA, and k-means algorithms
with respect to all of the performance metrics.

3Arabic textual entailment data set http://www.cs.man.ac.uk/~ramsay/ArabicTE/

5

biuro
Podświetlony

biuro
Podświetlony

biuro
Podświetlony

Table 2: Examples of output of each step in preprocessing stage

Stage Sentence 1 Sentence 2

اهجارختساولالدتسالاتاقالعمهفىلعثحبلااذهيفانلمع

..ةيبرعلاةغللاطقفسيلو،تاغللاعيمجيفلمجلانيب

ولالدتسالاتاقالعفاشتكاىلعثحبلااذهيفانلمع

ىلعلمعنمل،طقفةيبرعلاةغللايفلمجلانيبتاضقانتلا

!تاغللايقابيفاهفاشتكا

Tokeniza-
tion

,'تاقالع','مهف','ىلع','ثحبلا','اذه','يف','انلمع','..'])

,'عيمج','يف','لمجلا','نيب','اهجارختسا','و','لالدتسالا'

(['ةيبرعلا','ةغللا','طقف','سيلو','،تاغللا'

,'تاقالع','فاشتكا','ىلع','ثحبلا','اذه','يف','انلمع'])

,'ةغللا','يف','لمجلا','نيب','تاضقانتلا','و','لالدتسالا'

,'يقاب','يف','اهفاشتكا','ىلع','لمعن','مل','،طقف','ةيبرعلا'

(['!','تاغللا'

Punctua-
tion Re-
moval

,'تاقالع','مهف','ىلع','ثحبلا','اذه','يف','انلمع']

,'عيمج','يف','لمجلا','نيب','اهجارختسا','و','لالدتسالا'

['ةيبرعلا','ةغللا','طقف','سيلو','،تاغللا'

,'تاقالع','فاشتكا','ىلع','ثحبلا','اذه','يف','انلمع']

,'ةغللا','يف','لمجلا','نيب','تاضقانتلا','و','لالدتسالا'

,'يقاب','يف','اهفاشتكا','ىلع','لمعن','مل','،طقف','ةيبرعلا'

['تاغللا'

Snowball
Stemmer

,'لالدتسا','قالع','مهف','ىلع','ثحب','اذه','يف','لمع']

,'طقف','سيل','غللا','عيمج','يف','لمج','نيب','جارختسا','و'

['برع','غللا'

,'قالع','فاشتكا','ىلع','ثحب','اذه','يف','لمع']

,'طقف','برع','غللا','يف','لمج','نيب','ضقانت','و','لالدتسا'

['غللا','قاب','يف','فاشتكا','ىلع','لمعن','مل'

Table 3: Performance of different algorithms considering accuracy, specificity,
F-score, and MCC metrics on Appendicitis data set

Accuracy
Mean ± Std.
Dev.

Specificity
Mean ± Std.
Dev.

F-score
Mean ± Std.
Dev.

MCC
Mean ± Std.
Dev.

Proposed 84.1198± 0.3451a0.7480± 0.0263a0.8545± 0.0043a0.6952± 0.0068a

GWO 83.0049 ±
0.2638b

0.7229 ±
0.0238b

0.8465 ±
0.0019b

0.6764 ±
0.0035b

JAYA 79.1217 ±
0.6563e

0.7237 ±
0.1132b

0.8027 ±
0.0183e

0.6027 ±
0.0112e

PSO 80.2758 ±
3.5350d

0.6924 ±
0.0986c

0.8227 ±
0.0270c

0.6269 ±
0.0563d

SCA 81.3237 ±
1.1710c

0.7340 ±
0.0643ab

0.8266 ±
0.0129c

0.6391 ±
0.0197c

K-means 77.6500 ±
0.2781f

0.00399 ±
0.0004d

0.8082 ±
0.0028d

0.5861 ±
0.0071f

4 Materials and Methods
4.1 Problem Statement
A complete graph Kn includes a set of n vertex V = {v1, v2, ..., vn} and a distance
matrix C = {c(vi, vj) | i, j = 1, 2, ..., n} (c(vi, vj) that is the cost to travel from
vertex vi to vj). A resource matrix RM = {r(vi, vj)} shows the required resource
consumption to travel from vertex vi to vj . Let R = (1, 2, ..., k) be a set of k vehicles.
All vehicles start at a depot s = v1. Let RMmax be the maximum total resources of
all vehicles. A route T = (R1, ..., Rl, ..., Rk) consists of a set of routes. Each route

6

9

depot

2

5

8

11
2

5

5 4

83

9

10

3

6 12

1

4

7

4 8

10
5

11
5

12
6

3
5

6 8
7

6

1210

Pupil's
location

12
5

5

7

10
7

10
Route 1

Route 2

Route 3

Figure 3: Example of how SBDP-RC is represented in drawing

Rl = (v1, ..., vh, ..., vm, vm+1 = v1) is created by vehicle l− th. The waiting time of vh
(1 < h ≤ m) on Rl is the cost of the path from v1 to vh:

l(P (v1, vh)) =

h−1∑
i=1

c(vi, vi+1). (1)

Let W (Rl) be the total of the waiting times of Rl, and the resource consumption of
route Rl (LR) is the total of the resource consumption on its edges.

W (Rl) =

m+1∑
h=2

l(P (v1, vh)); (2)

LR(Rl) =

m∑
i=1

r(vi, vi+1). (3)

The aim is as follows:

W (T) =

k∑
l=1

W (Rl) → min . (4)

The resource consumption of each vehicle must satisfy the following:

k∑
l=1

LR(Rl) ≤ RMmax. (5)

SBDP-RC requires a solution that begins at v1 and visits each vertex exactly once such
that the waiting times of the route are minimized. In this problem, we are interested
in a Hamiltonian cycle; this means that the deliverymen return to the vertex from
which they began their routes. Consider the example of the small graph that is shown
in Figure 3. Assume that we have complete graph K12 = 0 ∪ {1, 2, 3, ..., 12}. All
vehicles start at the main depot (vertex 0), and each pupil’s location corresponds to
a vertex in the graph. The cost values to travel between two vertices are highlighted

7

biuro
Podświetlony

biuro
Notatka
Zmienne w tekście i we wzorach proszę zapisywać kursywą.

in black, while the resource consumption values are highlighted in red. We have
route T = (R1 = (v0, v2, v5, v8, v11, v0), R2 = (v0, v1, v4, v7, v10, v0), R3 = (v0, v3, v6,
v9, v12, v0)). Assume that the value of RMmax is 100; the waiting times for each route
are calculated as follows:

W (R1) = c(v0, v2) + c(v0, v2) + c(v2, v5) + c(v0, v2)

+c(v2, v5) + c(v5, v8) + c(v0, v2)

+c(v2, v5) + c(v5, v8) + c(v8, v11)

+c(v5, v8) + c(v0, v2) + c(v2, v5)

+c(v5, v8) + c(v8, v11) + c(v11, v0)

= 2 + (2 + 5) + (2 + 5 + 8)

+(2 + 5 + 8 + 9) + (2 + 5 + 8 + 9 + 12)

= 84.

W (R2) = c(v0, v1) + c(v0, v1) + c(v1, v4) + c(v0, v1)

+c(v1, v4) + c(v4, v7) + c(v0, v1)

+c(v1, v4) + c(v4, v7) + c(v7, v10)

+c(v0, v1) + c(v1, v4) + c(v4, v7)

+c(v7, v10) + c(v10, v0)

= 3 + (3 + 6) + (3 + 6 + 7)

+(3 + 6 + 7 + 12) + (3 + 6 + 7 + 12 + 10)

= 94.

W (R3) = c(v0, v3) + c(v0, v3) + c(v3, v6)

+c(v0, v3) + c(v3, v6) + c(v6, v9)

+c(v0, v3) + c(v3, v6) + c(v6, v9)

+c(v9, v12) + c(v0, v3) + c(v3, v6)

+c(v6, v9) + c(v9, v12) + c(v12, v0)

= 4 + (4 + 10) + (4 + 10 + 11)

+(4 + 10 + 11 + 12)

+(4 + 10 + 11 + 12 + 5) = 122.

The waiting times for the route are as follows:

W (T) = 84 + 94 + 122 = 300.

The resource consumption of each route is as follows:

LR(R1) = r(v0, v2) + r(v2, v5) + r(v5, v8)

+r(v8, v11 + r(v11, v0)

= 5 + 4 + 3 + 10 + 5 = 27.

LR(R2) = r(v0, v1) + r(v1, v4) + r(v4, v7)

+r(v7, v10) + r(v10, v0)

5 + 8 + 6 + 10 + 7 = 36.

8

LR(R3) = r(v0, v3) + r(v3, v6)

+r(v6, v9) + r(v9, v12) + r(v12, v0)

= 8 + 5 + 5 + 6 + 7 = 31.

LR(T) = 27 + 36 + 31 = 94.

The solution is feasible because the total resource consumption of all routes LR(Ri)
(i = 1, ..., 3) is less than RMmax.

4.2 Literature Review
As we know, SBDP-RC has not been studied much. In the literature, several variants
of the problem have been proposed; we describe these as follows: 1) mDMP or mTRP
is the case when the resources are infinitive. Several metaheuristics for solving the
problem were proposed in [4, 31, 28]. The experimental results showed that several al-
gorithms [4, 31, 28] gave good solutions fast for large instances of up to 500 customers;
2) mTRP with distance constraint (mTRP-DC) is the case where the maximum dura-
tion of each vehicle is lower a predetermined value. The two metaheuristic algorithms
in [7, 25] can be applied well to the problem in a reasonable amount of time; 3) Ca-
pacitated mTRP [22, 37] is the case where the vehicle’s capacity does not exceed the
permitted limit. The metaheuristic in [7] also receives good feasible solutions fast; 4)
mTRP with profits (mTRPP) aims to find a solution to maximize the total revenue.
In this case, some vertices may not be visited. The metaheuristic algorithm in [32, 24]
produced good instances with up to 200 vertices; 5) The deliveryman problem (DMP)
with (without) time windows is a special case of mTRP where there is a only vehicle
to run. Numerous metaheuristic algorithms [5, 3, 6, 27] for the problem have also
been developed. The experimental results showed their expressive performance for
large instances; 6) Recently, a new variant of mTRP post-disaster was introduced in
[1, 9]. In this case, an additional cost for a road-clearance operator is involved in the
function cost. They tested their algorithms on the Istanbul data set.

To our knowledge, the above algorithms are the best algorithms for the prob-
lem’s several variants. However, resource constraints are not involved; therefore, these
algorithms are not easily adapted to SBDP-RC.

4.3 Our Algorithm and Contribution
The problem can be solved by exact and heuristic (or metaheuristic) algorithms. An
exact algorithm obtains an optimal solution, but it consumes much time. Heuristic ap-
proaches include the classical heuristic and metaheuristic algorithms: the former finds
a solution fast, but the solution’s quality may not be good; on the other hand, the
latter reaches a near-optimal solution in a short amount of computation time. There-
fore, metaheuristic is a suitable approach for solving large-scale problems; however,
its efficiency is mainly evaluated through experiments.

A good metaheuristic needs to maintain a balance between exploration and ex-
ploitation strategies. The main contributions of this work can be summarized as
follows:

• From an algorithmic perspective, the proposed metaheuristic consists of two
phases: 1) in the first phase (the construction phase), an initial solution is
created based on the insertion heuristic scheme. This step aims to obtain a
good-enough solution; 2) the post-phase (the improvement phase) improves the

9

solution created from the previous one. Starting from a good-enough solution
helps the algorithm to increase the chance of improving the solution’s quality. In
this phase, we use the randomized variable neighborhood search scheme (RVNS)
to investigate various neighboring solutions to find good solutions. RVNS aims
to exploit a good solution space that is explored. Two additional characteristics
are integrated into the proposed algorithm. First, according to a distance metric,
the algorithm accepts a solution that is worse than the current solution if it is far
from it; this enhances the exploration of far-away valleys. Second, the search
is allowed to move to unfeasible solution spaces by using a penalty method.
When a constraint is violated, the value of the parameter increases to drive the
search toward feasible regions. This means that the algorithm tries to exploit
the feasible regions that are explored. After this, we enlarge the search space by
decreasing it if no better solutions can be found. By doing this, the algorithm
has a higher chance of finding better solutions. When the algorithm still fails
in finding better solutions, the shaking technique is applied to move the search
toward a completely new solution space that is unexplored.

• From the computational perspective, our algorithm obtains good feasible solu-
tions fast for instances with large sizes. Additionally, the algorithm receives
better solutions as compared to the previous algorithms in many cases.

The rest of this paper is organized as follows. Section 2 introduces our algorithm; then,
the experiments are described in Section 3. Sections 4 and 5 discuss and conclude the
article, respectively.

5 Proposed Algorithm
5.1 Variants of VNS
We describe VNS, GVNS [28], and shaking [27], respectively.

• VNS is described in [28]. It is divided into two main steps: 1) shaking, and
a local search step. In the step, shaking implements the move to a random
solution. The second phase consists of applying a local search to the solution
and selecting the best one in a neighborhood set.

• Randomized VNS (RVNS) [28] is a variant of VNS. In RVNS, the search proce-
dure is performed randomly to generate neighbor solutions.

• GVNS [28] is a variant of VNS. GVNS is a version of VNS in which VNS is
applied as the improvement procedure. In this article, we use GVNS with a
random neighborhood search.

• Skewed-GVNS [28] is an extension of basic GVNS that explores solution spaces
that are far from the incumbent solution. Therefore, we can accept worse solu-
tions if they are different from the incumbent.

5.2 Neighborhood Investigation
Several neighborhoods [13, 29] in the literature are applied to exploit the search re-
gion. Let Nk(k = 1, ..., km) be a set of neighborhood structures. Now, let T =
(R1, R2, ..., Rl) be a tour with l routes, we then introduce a novel neighborhood struc-
ture.
For inter-route: it optimizes a route.

10

• Forward (N1) pushes a vertex forward one position. This neighborhood of R
is defined as a set N1(R) = {Ri = (v1, v2, ..., vi−1, vi+1, vi, ..., vm) : i = 2, 3, ...,
m− 1}. The complexity time is O(n).

• Backward (N2) pushes a vertex backward one position. This neighborhood of
R is defined as a set N2(R) = {Ri = (v1, v2, ..., vi, vi−1, vi+1, ..., vm) : i = 2, 3, ...,
m− 1}. The complexity time is O(n).

• Exchange-adjacent (N3) exchanges each pair of adjacent vertices. This neigh-
borhood of R is defined as a set N3(R) = {Ri = (v1, v2, ..., vi−2, vi, vi−1, vi+1, ..., vm) :
i = 3, 4, ...,m− 1}. The complexity time is O(n).

• Exchange (N4) exchanges the positions of each pair of vertices. This neighbor-
hood of R is defined as a set N4(R) = {Rij = (v1, v2, ..., vi−1, vj , vi+1, ..., vj−1, vi, vj+1, ..., vm) :
i = 2, 3, ...,m− 3; j = i+ 3, ...,m}. The complexity time is O(n2).

• 2-opt (N5) removes each pair of edges from the tour and reconnects them. This
neighborhood of T is defined as a set N5(T) = {Tij = (v1, v2, ..., vi, vj , vj−1, ..., vi+2,
vi+1, vj+1, ..., vm) : i = 1, ..., n − 4; j = i + 4, ...,m}. The complexity time is
O(n2).

• 3-opt (N6) reallocates three vertices to another position. This neighborhood of
R is defined as a set N6(R) = {Ri = (v1, v2, ..., vi−1, vi, vj+1, ..., vk, vi+1, ..., vj , vk+1...., vm) :
i = 2, 3, ...,m − 5, j = 4, ...,m − 3, k = 6, ...,m − 1}. The complexity time is
O(n3).

For intra-route: Intra-route is used to swap or exchange vertices between two dif-
ferent routes.

• Exchange-2-routes N7(R) exchanges two vertices from different routes. The
swap-2-route neighborhood of Rl and Rh is defined as a set N8(T) = {Ti =
(R1, ..., R2, ..., Rl = (v1l, v2l, ..., vih, vil+1, ..., vml), ..., Rh = (v1h, v2h, ..., vil, vih+1, ..., vmh), ..., Rk) :
il = 2, 3, ...,ml − 1, ih = 2, 3, ...,mh− 1}. The complexity time is O(n2)

• Insert-2-routes N8(R) removes a vertex in turn and inserts it at the best possi-
ble position in the other. An insert-2-route neighborhood of Rl and Rh is defined
as a set N8(T) = {Ti = (R1, ..., R2, ..., Rl = (v1l, v2l, ..., vih−1, vih, vil+1, ..., vml), ..., Rh =
(v1h, v2h, ..., vih−1, vih+1, ..., vmh), ..., Rk) : il = 2, 3, ...,ml−1, ih = 2, 3, ...,mh−
1}. The complexity time is O(n2).

5.3 Restricted Infeasible Solution Space
Infeasible solutions are penalized by a value. With route T , letV S(T), LR(Ri) be
a penalty value and the resource consumption of route Ri. Penalty value V S(T)
is computed as follows: max{(

∑k
i=1 LR(Ri)−RMmax), 0}. The solutions are then

calculated in accordance with W ′ = W + PV × V S(T), in which PV is the penalty
factor. If the solution is feasible, then LR ≤ RMmax and W ′ = W . To make the
algorithm’s structure more readable, a flowchart of the proposed algorithm is described
in Figure 4. The proposed algorithm consists of two phases. Algorithm 1 depicts the
whole process in pseudocode.

5.4 Construction
Algorithm 2 shows the constructive procedure. Assume that we have a partial solution
and V

′
is a list of unvisited vertices (V

′
⊆ V). To complete the partial solution, a

11

biuro
Podświetlony

biuro
Podświetlony

biuro
Podświetlony

Figure 4: Flowchart of skewed GVNS algorithm

T = Insertion Heuristic

T' = Perturbation(T, p)

T'=RVNS(T')

iter<IterMax

iter=0

yes

p=0

p++

p<level_max

no

time<t_max

start

no

Return the best
solution

no

found better or

accept worse

solution

T T'

p=0

iter=0
iter++

yes no

yes

yes

12

Algorithm 1 Skewed GVNS
Require: T, IterMax, lvel_max, and tmax are a starting solution, the number

of iterations, the strength of the perturbation procedure, and the maximum
time to run, respectively.

Ensure: the best-found solution T ∗.
1: repeat
2: {Step 1: construction step}
3: T ← Construction(v1, V);{T is an initial solution. It can be feasible or

infeasible}
4: p = 1;
5: {Step 2: improvement step}
6: while (p < lvel_max) do
7: iter = 0;
8: while (iter < IterMax) do
9: T

′ ← T ;
10: {driving the search to a new promising solution space}
11: T

′ ← Perturbation(T,p);
12: {implement RVNS to exploit good solution space}
13: T

′ = RVNS(T ′);
14: {accepting the worse solution}
15: if (W (T

′
) < W (T)× (1 + β × d(T

′
, T)) or (W (T

′
) < W (T ∗)) then

16: T ← T
′ ;

17: p=0;
18: iter=0;
19: {update best solution}
20: if ((W (T

′
) < W (T ∗)) and (T is feasible)) then

21: T ∗ ← T
′ ;

22: end if
23: else
24: iter ++;
25: end if
26: end while
27: p++;
28: end while
29: until time < tmax

30: return T ∗; =0

vertex in V
′

needs to be inserted. We need to select a vertex and the position to insert
it into the solution. We use a greedy scheme to pick a vertex so that its insertion causes
the solution with the lowest cost. A solution is generated when all of the vertices of
Kn are routed. The procedure then returns the feasible solution (if any). Otherwise,
for added randomness in routing, it tries to generate n solutions; then, the one with
the minimum fitness value will be returned.

13

Algorithm 2 Construction(v1,Kn)
Require: v1,Kn are a main depot and the graph, respectively.
Ensure: A starting solution T .

1: S = ∅; {S is the list of infeasible routes}
2: FOUND=False;
3: T = φ; {Initially, T is empty}
4: for (l = 1; l ≤ k; l ++) do
5: Rl ← Rl ∪ v1; {k routes start at depot}
6: end for
7: repeat
8: repeat
9: Select a random route Rl(Rl ∈ R);

10: Randomly pick a new vertex v and an inserted position j < |Rl| so that
the cost of R′

l after inserting is minimal; {|Rl| is the number of vertices
inRl}

11: Update Rl by R
′

l;
12: until all vertices are visited
13: for (i = 1; i ≤ k; i++) do
14: T ← T ∪Ri;{update all routes in the tour}
15: end for
16: if (T is feasible) then
17: return T ;
18: else
19: S ← S ∪ T ;
20: end if
21: until |S| < n
22: if FOUND=False then
23: T ←− solution with minimum cost W ′ in set S;
24: end if
25: return T ; =0

5.5 Improvement
In the second step, it tries to improve the feasible solution that was created by the
previous phase. In this step, we use RVNS in [28] to exploit the neighborhood so-
lutions. Whenever a given neighborhood of set N fails to improve the current best
solution, RVNS randomly selects another neighborhood from the same set to con-
tinue the search. The aim of using RVNS is to exploit a good solution space that has
just been explored. Preliminary experiments indicate that randomly selecting another
neighborhood can find better solutions than a deterministic order. If we find a better
solution, it becomes the new current solution. However, the search cannot escape from
very large valleys in some cases. In this paper, we adopt a skewed VNS approach that
permits moves to worse solutions to explore more valleys that are far from the current
solution. The aim is to support the search for getting out of huge valleys. Here, we

14

Algorithm 3 RVNS(T)
Require: T is a route.
Ensure: A new solution T .

1: Initialize neighborhood list NL;
2: while NL 6= 0 do
3: Choose a neighborhood N in NL at random
4: T

′ ← arg min N(T); {Neighborhood search}
5: if ((L(T ′

) < L(T)) then
6: T ← T

′

7: Update NL;
8: else
9: Remove N from the NL;

10: end if
11: end while=0

Algorithm 4 Perturbation(T, p)
Require: T, T ∗, p are the route, the best current route, and the value to control

the strength of the perturbation, respectively.
Ensure: a route T .

1: i = 1;
2: while (i < p) do
3: {Select random method to shaking}
4: rnd=rand(2);
5: if (rnd == 1) then
6: T

′ ← Apply double-bridge in T ;
7: else
8: T

′ ← Exchange randomly vertices in T ;
9: end if

10: T
′′ ← arg min 3-opt-(T ′

);
11: if (W (T

′′
) > (1− ρ)×W (T ∗)) then

12: T ← T
′′

13: break;
14: else
15: i++;
16: end if
17: end while
18: return T ; =0

make a move from solution T to neighboring solution T
′′

if

W (T
′
) < W (T)× (1 + β × d(T, T

′
). (6)

Let d(T, T
′
) be the metric distance between T , and T

′
; this shows the difference

between the two solutions. The greater and greater the metric distance is, the more
and more the difference is. In mathematical respect, the distance is the minimum

15

number of transformations from T to T
′
. When there exists no polynomial operator

for calculating d(T, T
′
), d(T, T

′
) is n (the number of vertices in the graph) minus the

number of vertices that have the same position in both T and T
′
.

The detail of the improvement step is described in Algorithm 3.
The aim of the perturbation mechanism is to maintain exploration; it drives the

search to a new promising solution space. If the mechanism implements too-small
shaking moves, the search gets stuck into the local optima. Conversely, large moves
in the shaking drive the search to unpromising or infeasible spaces. In an approach
to fulfill the omission, we use a new shaking technique that was developed from the
original double-bridge technique [27]. A randomly neighboring solution T

′′
is gener-

ated by the double-bridge or random exchange method; then, it replaces the current
solution if (W (T

′′
) > (1−ρ)×W (T ∗)) (ρ is a threshold ratio). The shaking procedure

performs p times, where ρ is a parameter that is called the strength of the shake. The
shaking is applied successfully in [37]. The detail is described in Algorithm 4.

5.6 Independent Component Analysis
Independent component analysis (ICA) is a statistical technique used to separate in-
dependent sources that affect data. In the context of EEG the set of independent
components can be interpreted as the sources of brain activity that generated the
recorded signal. ICA belongs to a family of methods called blind source separation
(BSS) [8].

The BSS problem can be represented by the equation:

S = WX, (7)
where S ∈ RCxM is the matrix of C components for M samples, W ∈ RCxN is the
transition matrix with the weight vectors between each signal and electrode and X ∈
RNxM is the data from N electrodes. W is the unknown separation matrix that will
satisfy this equation.

The limitation of the BSS methods consists in impossible determination of the
original amplitude of the source signals and no more than N sources can be found for
N recorded signals [20]. Additionally, independent component analysis (ICA) relies
on the assumption that the sources are statistically independent, indicating that the
sources are not correlated with each other and as a rule not distributed in the value
domain. If a distribution of the original signals is close to normal, the result can be
ambiguous [20]. The goal with a matrix S is to find the components of X that are
as independent of each other as possible. To obtain this, the data is pre-processed,
specifically centered (the mean of each signal is zero) and whitened (variance of each
signal is equal to 1) to remove correlation. Then, different measures of normality (ne-
gentropy or kurtosis) are used to modify a W matrix using the Newton approximation
method and the chosen non-quadratic function.

There are many variations of the ICA algorithm. However, the fastICA algorithm
was chosen for the implementation because it is the most commonly used and it was
easy to use parallel methods on it.

5.7 Data Representation and Implementation
The fastICA algorithm implementation was written in C, based on the version available
in Matlab and the open-source it++ library. The tanh (hyperbolic tangent) function

16

biuro
Podświetlony

biuro
Podświetlony

Listing 1: Scheme of fastICA algorithm
1 // W - separating matrix
2 // n - number of eletrodes , m - number of samples
3 // resultW - the resulting separation matrix
4 // whiteningMatrix - calculated earlier
5 randWeight(W, n, n); // random weights
6 orth(W, n, n); // orthogonalization
7 while (!found) { // next iterations
8 found=0;
9 if (it > maxNumIterations - 1) {

10 //iteration count exceeded
11 }
12 it++;
13 // Weight matrix normalization and convergence estimation
14 // Checking if the weights have changed
15 if(!found) {
16 // Modification of weights and set found parameter
17 }
18 }
19 // Rewriting the final form of the separating matrix
20 mul(W, n, true, whiteningMatrix , n, false, n, resultW);

from the basic mathematical library was used to modify the weights. A symmetrical
approach of searching for components was adopted, indicating that the algorithm
calculates all components simultaneously.

In Listing 1 there is a scheme of fastICA algorithm with an indication of the most
important steps. The mul functions use matrix multiplication on the CPU or GPU
depending on the version of the implementation.

The parallel directives from OpenMP were used in parts of the algorithm where the
entire signal was applied (signal whitening and calculation of successive approxima-
tions). With the Intel Cilk Plus extensions for C and C++, one can use array notation
and built-in reduction functions (such as finding the maximum or minimum value in
an array), which makes the code more readable and forces effective vectorization. For
parts of the algorithm, such as matrix multiplication, vector and eigenvalue calcula-
tions, it was much more advantageous to use ready-made solutions from the BLAS and
MKL libraries (cblas_dgemm, cblas_dcopy, LAPACKE_dsyev, LAPACKE_dgesvd)
than their implementations [33].

Originally, in the iterative part of the algorithm, the matrix multiplication of the
entire signal was implemented by multiplication functions from the CUBLAS library,
which is the equivalent of the BLAS library for the NVIDIA graphics cards. When
performing calculations on the graphics card, it is important to be aware of the addi-
tional time overhead associated with host-device data transfer [41]. In this situation,
each iteration means additional operations related to uploading and downloading data.
Using the potential of the GPU inside the iterative loop, each data transfer seemed
risky. However, by transferring the calculations related to the use of the non-square

17

biuro
Podświetlony

function and modifying the weights to a separate library compiled by nvcc, the size
of the data sent at a time was decreased. This required writing a function dedicated
to the graphics card (kernel) taking into account the problems of memory shared by
blocks and threads of the CUDA architecture. In Listing 2, you can find a code frag-
ment along with its invocation. On the other hand, in Listing 3, there is a section of
C code that executes in each iteration.

6 Results
All tests performed on these architectures are described in Table 4.

Table 4: Selected architectures

Infrastruc-
ture

Cluster
name CPU Number

of cores GPU

UMCS Solaris
2x Intel Xeon
E5-2670 v3
@ 2.30GHz

24 NVIDIA
Tesla V100s

PLGrid Zeus
2x Intel Xeon
X5650
@ 2.67GHz

12 NVIDIA
Tesla M2090

PLGrid Prometheus
2x Intel Xeon
E5-2680
@ 2.5GHz

24 NVIDIA
Tesla K40d

The study compared the speed of the fastICA implementation for the data sets of
256×1000 (1 second of recording), 256×10000 (10 seconds of recording), 256×100000
(100 seconds of recording) and 256×1000000 (1000 seconds of recording) data sets.
For each architecture, the time efficiency was compared depending on the number of
threads the program was launched with. The initial selection of weights was the same
each time, and the resulting time was averaged over the number of needed iterations
(for the purposes of this study, it was established that approximately 100 iterations
were needed for the selected EEG data).

6.1 Tests of implementation
The previous research proved that the use of virtual cores does not speed up the
performance of the algorithm as is the case with physical cores, so the tests were
performed without the use of hyper-threading. [14, 15, 17, 18].

6.1.1 Solaris
Table 5 shows the program execution time in seconds for all data. Figure 5 presents
the acceleration obtained by the CPU+GPU version compared to the CPU version
with a given number of threads. As follows from the results the use of GPU capabilities
speeds up the performance of the algorithm. The difference is not as significant as the

18

biuro
Podświetlony

biuro
Podświetlony

biuro
Podświetlony

biuro
Podświetlony

biuro
Podświetlony

Listing 2: Code for kernel function
1 __global__ void kernelSum(double * __restrict__ A,
2 double * __restrict__ blockResults , int m, double a1) {
3
4 extern __shared__ double sums[];
5 double sum = 0.0;
6 double * p = &A[blockIdx.x * m];
7
8 for(int i = threadIdx.x; i < m; i += blockDim.x) {
9 // Using of tangent functions

10 A[blockIdx.x * m + i] = tanh(a1*p[i]);
11 sum += (1 - pow(p[i], 2));
12 }
13
14 sums[threadIdx.x] = x;
15 __syncthreads();
16
17 for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
18 if(threadIdx.x < offset) {
19 sums[threadIdx.x] += sums[threadIdx.x + offset];
20 }
21 __syncthreads();
22 }
23
24 if(threadIdx.x == 0) {
25 blockResults[blockIdx.x] = sums[0];
26 }
27 }
28
29 void tanhGPU_wrapper(double * A, double a1, int n, int m,
30 double * X, double * W, double * G, double * nvec) {
31
32 int nm = n*m;
33 int bs, mings;
34
35 cudaOccupancyMaxPotentialBlockSize(
36 &mings, &bs, tanhGPU, 0, nm);
37 size_t shmsize = sizeof(double) * bs;
38
39 mulGPU(X, m, true, W, n, false, n, A);
40
41 kernelSum <double><<<n, bs, shmsize >>>(A, nvec, m, a1);
42
43 mulGPU(X, n, false, A, n, false, m, G);
44
45 cudaDeviceSynchronize();
46 } 19

Listing 3: Part of the code with the modification of weights using the kernel
function
1 // W - buffer with weights
2 // c_W - buffer with weights for CUDA
3 cublasSetVector(nn, sizeof(*W), W, 1, c_W, 1);
4
5 // n - size; W is matrix nxn
6 copyMatrix(Wprev, W, n, n);
7
8 cublasSetVector(n, sizeof(*nvec), nvec, 1, c_nvec, 1);
9

10 // Formula for maximizing the normal distribution
11 // using the tangent function
12 // m - number of samples
13 // G1, G2 -- values of tangent functions
14 // c_X - input values
15 // c_hypTan - matrix with results from kernel function
16 // nvec - vector with results from kernel funtion
17
18 tanhGPU_wrapper(c_hypTan , a1, n, m, c_X, c_W, c_G1, c_nvec);
19 cublasGetVector(nn, sizeof(*c_G1), c_G1, 1, G1, 1);
20 cublasGetVector(n, sizeof(*c_nvec), c_nvec, 1, nvec ,1);
21
22 #pragma omp parallel // efficiency: 95\%,
23 // gain: 1,90x according to Intel Advisor
24 {
25 #pragma omp for
26 for(int i = 0; i < n; i++)
27 G2[i*n:n] = W[i*n:n]*nvec[i];
28 } //parallel
29
30 // Modification of weights
31 W[0:nn] = (G1[0:nn] - G2[0:nn])/m*a1;

20

Table 5: Solaris: 2x Intel Xeon CPU E5-2670 v3 @ 2.30GHz – 24 cores, NVIDIA
Tesla V100s

256x1000 256x10000 256x100000 256x1000000
Number

of threads
CPU+
GPU CPU CPU+

GPU CPU CPU+
GPU CPU CPU+

GPU CPU

1 3.075 2.781 4.118 11.577 5.100 100.253 17.346 989.861
2 3.197 2.582 4.150 8.154 5.253 64.152 15.541 648.398
3 3.346 2.456 4.479 7.572 4.860 57.090 14.205 571.254
4 2.862 2.087 3.835 6.379 4.337 48.028 13.069 461.153
5 2.827 2.338 3.942 6.511 5.107 49.054 13.467 459.481
6 3.026 1.992 3.813 5.738 4.571 41.999 13.278 409.896
7 2.934 1.958 3.944 5.919 4.358 45.687 12.802 404.973
8 2.721 1.918 3.716 5.291 4.530 39.361 12.306 382.040
9 2.982 2.039 4.237 5.643 4.486 42.711 12.386 390.353

10 2.828 1.977 4.213 5.440 4.294 38.645 12.465 364.328
11 2.879 2.003 3.946 5.603 4.666 40.752 12.361 375.422
12 2.880 1.925 3.783 5.448 4.429 40.369 12.562 354.141
13 2.799 1.976 3.887 5.379 4.352 42.271 12.426 368.260
14 2.861 1.981 4.246 5.256 4.468 38.177 12.124 346.272
15 2.886 1.925 3.804 5.474 4.429 40.127 12.181 350.959
16 2.705 1.821 4.008 5.215 4.099 36.894 12.385 341.640
17 2.948 1.997 3.886 5.658 4.415 38.647 12.524 348.708
18 2.890 2.013 3.938 5.347 4.392 37.018 12.099 340.452
19 2.903 2.029 3.946 5.496 4.423 40.451 12.392 341.226
20 3.067 2.066 3.802 5.360 4.443 37.483 12.184 351.473
21 2.900 1.949 3.958 5.435 4.403 37.311 12.310 339.592
22 2.837 2.076 4.060 5.471 4.357 38.132 12.012 342.490
23 2.998 2.124 3.904 5.475 4.422 39.912 12.412 341.577
24 3.085 2.106 4.052 5.439 4.450 37.579 12.189 346.825

number of threads increases, but there is still a slight time gain from using the extra
CPU cores.

Figure 6 shows the acceleration of the CPU version (a) and CPU+GPU (b) depend-
ing on the number of threads. The speedup is calculated in relation to a single-threaded
program. They show more clearly that adding computational cores still generates a
profit, although in the case of the CPU version the graphs are flatter.

Notably, the machine with the Tesla V100S card takes 17 seconds for the largest
data size using a single thread. However, we are to do with very powerful equipment of
the latest generation. It is worth noting, however, that the use of CUDA capabilities
without introducing parallel calculations on the CPU reduces the calculation time
significantly. It is important in the context of building computing units in the research
centers for the processing of EEG data. Providing such a unit with a graphics card
with adequate power can be cheaper than building a multi-core computing cluster.

21

biuro
Podświetlony

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

Figure 5: Solaris: 2x Xeon CPU E5-2670 v3 @ 2.30GHz – 24 cores, NVIDIA
Tesla V100s – comparing the acceleration of the CPU+GPU version to the CPU

6.1.2 Zeus and Prometheus
Tables 6 and 7 show the program execution time in seconds for all data. As in the So-
laris cluster, more cores reduce the computation time, the implementation is similarly
scalable, and the increase in data size generates better time gains.

Figures 7 and 9 present the acceleration of the CPU+GPU version compared to
that of CPU with a given number of threads. Figures 8 and 10 show the obtained
acceleration of the version of the implementation using CPU (a) and CPU+GPU (b)
depending on the number of threads. The speedup is calculated in relation to a single-
threaded program. One can see a similar relationship, that is, using more threads, you
can still expect a gain in time.

7 Discussion
The results proved that the support from the graphics card and CUDA technology
accelerates the execution time of the algorithm significantly. The increase in the
number of CPU cores still resulted in acceleration, although the benefits were not so
visible.

Owing to the variety of architectures, it is possible to indicate which elements of
the implementation are crucial for time optimization (in terms of reducing the running
time) of the algorithm. At the same time, it is worth mentioning that due to the
complexity of the structure of computing clusters, creating efficient programs on them
is a demanding task. The fact that fastICA is an iterative method requires thread
synchronization after each iteration, which affects the execution time significantly and
makes it difficult to scale. It can be stated that this is the main ”bottleneck” of the
algorithm with no prospects for improving the results at this point.

22

biuro
Podświetlony

biuro
Podświetlony

biuro
Podświetlony

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

(a) CPU-based implementation

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

(b) CPU+GPU-based implementation

Figure 6: Solaris: 2x Intel Xeon CPU E5-2670 v3 @ 2.30GHz – 24 cores, NVIDIA
Tesla V100s – the acceleration compared to the single-threaded version

As a matter of fact, the machine with the NVIDIA Tesla V100s graphics card gave
the most satisfactory results, although cards of this type are not the cheapest product.

23

Table 6: Zeus: 2x Intel Xeon X5650 @ 2.67GHz – 12 cores, Tesla M2090

256x1000 256x10000 256x100000 256x1000000
Number

of threads
CPU+
GPU CPU CPU+

GPU CPU CPU+
GPU CPU CPU+

GPU CPU

1 8.596 8.824 6.498 21.854 13.592 224.053 109.585 2242.188
2 6.994 6.436 5.408 13.451 12.222 130.692 101.576 1298.195
3 6.134 5.070 4.937 10.122 11.638 98.258 98.350 970.889
4 5.476 3.963 4.632 7.903 10.985 77.353 96.650 765.494
5 5.623 3.923 4.674 7.578 10.957 71.673 96.109 704.106
6 5.513 3.748 4.585 6.679 10.880 63.229 95.326 626.615
7 5.522 3.704 4.502 6.583 10.791 61.962 95.154 610.624
8 5.190 3.304 4.454 6.055 10.723 56.966 94.769 555.167
9 5.436 3.603 4.459 6.303 10.664 57.433 94.745 555.466

10 5.411 3.564 4.419 6.299 10.710 57.180 94.519 543.231
11 5.366 3.716 4.455 6.135 10.802 56.176 94.573 545.689
12 5.573 3.506 4.551 6.102 10.571 57.342 94.395 552.920

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 2 3 4 5 6 7 8 9 10 11 12

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

Figure 7: Zeus: 2x Intel Xeon X5650 @ 2.67GHz – 12 cores, Tesla M2090 –
comparing the acceleration of the CPU+GPU version to the CPU

However, the latest generation Intel Xeon processors are also quite expensive. These
factors should also be considered when building a computational machine for EEG
data analysis. Providing such unit with a graphics card with the appropriate power
could be less expensive than constructing a multi-core computing cluster.

24

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 3 4 5 6 7 8 9 10 11 12

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

(a) CPU-based implementation

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

1 2 3 4 5 6 7 8 9 10 11 12

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

(b) CPU+GPU-based implementation

Figure 8: Zeus: 2x Intel Xeon X5650 @ 2.67GHz – 12 cores, Tesla M2090 – the
acceleration compared to the single-threaded version

8 Conclusions and future works
This paper presents the time execution results for a parallel version of the fastICA
algorithm adapted to EEG signals and multi-core architectures (capacity of Intel ar-

25

Table 7: Prometheus: 2x Intel Xeon E5-2680 @ 2.5GHz – 24 cores, Tesla K40d

256x1000 256x10000 256x100000 256x1000000
Number

of threads
CPU+
GPU CPU CPU+

GPU CPU CPU+
GPU CPU CPU+

GPU CPU

1 2.494 2.575 1.470 6.272 4.328 63.333 43.934 633.295

2 2.144 2.340 1.448 4.237 4.184 40.630 42.545 399.542

3 2.057 2.223 1.459 3.724 4.154 33.801 42.229 353.096

4 1.968 2.056 1.405 3.242 4.059 29.936 41.688 300.085

5 2.089 2.150 1.421 3.299 4.099 28.971 41.608 281.807

6 1.951 2.083 1.366 3.091 4.029 26.651 41.509 259.350

7 1.911 2.042 1.352 3.073 4.064 28.096 41.478 271.448

8 1.733 1.937 1.305 2.798 4.026 24.679 41.283 237.445

9 1.934 1.956 1.343 2.985 3.967 25.829 41.204 246.441

10 1.886 1.984 1.361 2.859 4.042 24.261 41.231 232.248

11 1.866 1.899 1.338 2.819 3.970 24.460 41.245 232.758

12 1.869 1.917 1.409 2.737 3.965 24.172 41.082 216.436

13 1.885 1.941 1.285 2.836 3.935 23.769 41.180 234.071

14 1.879 1.864 1.319 2.783 4.006 23.355 41.048 223.344

15 1.907 2.054 1.387 2.857 3.968 24.689 41.112 215.137

16 1.912 1.861 1.318 2.803 4.002 22.574 41.096 207.854

17 1.871 1.874 1.371 2.937 4.019 24.664 40.990 241.892

18 1.892 1.993 1.377 2.854 3.991 22.576 41.045 219.282

19 1.940 2.132 1.330 2.920 3.957 25.215 41.052 227.162

20 1.975 2.142 1.449 2.828 4.159 23.150 40.995 205.798

21 2.103 2.042 1.335 2.992 3.936 23.164 41.055 216.180

22 1.959 1.954 1.316 2.924 3.921 22.844 40.982 204.775

23 1.975 2.167 1.385 3.063 3.982 24.487 41.162 226.745

24 2.243 2.080 1.483 2.893 3.992 22.750 41.086 213.694

chitectures and available libraries as well as extensions together with CUDA libraries).
Tests were carried out on several computational clusters using the EEG data of various
sizes. The paper indicates the possibility of improving the parallelized version of the
algorithm by transferring more calculations to the graphics card.

The future plan is also to integrate existing solutions with EGI System NetStation
and after separation of sources, to make an attempt to reject artifacts found in this way
automatically. A possible method of doing this is to use, among others, convolutional
neural networks.

Neuroimaging techniques, including EEG, provide excellent opportunities to get
to know how a person functions, and thus, based on the research and diagnostics, to
improve living conditions. Shortening the time of the electroencephalographic signal
analysis tools, it is possible to help more patients, accelerate research, and improve
BCI solutions.

Acknowledgements
This research was partially supported by

26

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

Figure 9: Prometheus: 2x Intel Xeon E5-2680 @ 2.5GHz – 24 cores, Tesla K40d
– comparing the acceleration of the CPU+GPU version to the CPU

References
[1] M. Ajam, V. Akbari, and F. S. Salman. Minimizing latency in post-

disaster road clearance operations. European Journal of Operational Research,
277(3):1098–1112, 2019.

[2] A. Albajes-Eizagirre, L. Dubreuil Vall, I.-S. David, A. Riera, A. Soria-Frisch,
S. Dunne, and G. Ruffini. EEG/ERP analysis: methods and applications. CRC
Press, 10 2014.

[3] H.-B. Ban. A rvnd+ils metaheuristic to solve the delivery man problem with time
windows. In A. Tagarelli and H. Tong, editors, Computational Data and Social
Networks, pages 63–69, Cham, 2019. Springer International Publishing.

[4] H. B. Ban and D. N. Nguyen. An effective grasp+vnd metaheuristic for the
k-minimum latency problem. In 2016 IEEE RIVF International Conference on
Computing & Communication Technologies, Research, Innovation, and Vision for
the Future (RIVF), pages 31–36, 2016.

[5] H. B. Ban and D. N. Nguyen. A meta-heuristic algorithm combining between tabu
and variable neighborhood search for the minimum latency problem. Fundamenta
Informaticae, 156(1):21–41, 2017.

[6] H. B. Ban and D. N. Nguyen. Metaheuristic for the traveling repairman problem
with time window constraints. In 2019 IEEE-RIVF International Conference on
Computing and Communication Technologies (RIVF), pages 1–6, 2019.

[7] B. H. Bang. A grasp+vnd algorithm for the multiple traveling repairman prob-
lem with distance constraints. Journal of Computer Science and Cybernetics,
33(3):272–288, Mar. 2018.

27

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

(a) CPU-based implementation

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
p

e
e
d
-u

p

number of threads

1 s
10 s

100 s
1000 s

(b) CPU+GPU-based implementation

Figure 10: Prometheus: 2x Intel Xeon E5-2680 @ 2.5GHz – 24 cores, Tesla
K40d – the acceleration compared to the single-threaded version

[8] G. D. Brown, S. Yamada, and T. J. Sejnowski. Independent component analysis
at the neural cocktail party. Trends in neurosciences, 24(1):54–63, 2001.

28

[9] M. Bruni, P. Beraldi, and S. Khodaparasti. A hybrid reactive grasp heuristic
for the risk-averse k-traveling repairman problem with profits. Computers &
Operations Research, 115:104854, 2020.

[10] M.-C. de Marneffe, A. N. Rafferty, and C. D. Manning. Finding contradictions in
text. In Proceedings of ACL-08: HLT, pages 1039–1047, Columbus, Ohio, June
2008. Association for Computational Linguistics.

[11] A. Delorme, T. Sejnowski, and S. Makeig. Enhanced detection of artifacts in eeg
data using higher-order statistics and independent component analysis. Neuroim-
age, 34(4):1443–1449, 2007.

[12] C. L. Dickter and P. D. Kieffaber. EEG methods for the psychological sciences.
SAGE Knowledge, Los Angeles, 2014.

[13] T. A. Feo and M. G. Resende. Greedy randomized adaptive search procedures.
Journal of global optimization, 6:109–133, 1995.

[14] A. Gajos and G. M. Wójcik. Independent component analysis of eeg data for egi
system. Bio-Algorithms and Med-Systems, 12(2):67–72, 2016.

[15] A. Gajos-Balińska, G. M. Wójcik, and P. Stpiczyński. Concept of independent
component analysis algorithm parallelisation. In Proceedings of Cracow Grid
Workshop, CGW’15, pages 55–56, 2015.

[16] A. Gajos-Balińska, G. M. Wójcik, and P. Stpiczyński. Parallel independent com-
ponent analysis algorithm - performance comparison for eeg signal. In Proceedings
of Cracow Grid Workshop, CGW’17, 2017.

[17] A. Gajos-Balińska, G. M. Wójcik, and P. Stpiczyński. High performance op-
timization of independent component analysis algorithm for eeg data. Lecture
Notes in Computer Science, 10777:495–504, 2018.

[18] A. Gajos-Balińska, G. M. Wójcik, and P. Stpiczyński. Cooperation of cuda and
intel multi-core architecture in the independent component analysis algorithm for
eeg data. Bio-Algorithms and Med-Systems, 16(3), 2020.

[19] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks, 10(3):626–634, 1999.

[20] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and
applications. Neural networks, 13(4):411–430, 2000.

[21] A. Kawala-Janik, W. Bauer, A. Al-Bakri, C. Haddix, R. Yuvaraj, K. Cichon, and
W. Podraza. Implementation of low-pass fractional filtering for the purpose of
analysis of electroencephalographic signals. In Conference on Non-integer Order
Calculus and Its Applications, pages 63–73. Springer, 2017.

[22] L. Ke and Z. Feng. A two-phase metaheuristic for the cumulative capacitated
vehicle routing problem. Computers & Operations Research, 40(2):633–638, 2013.

[23] A. Lastovetsky, L. Szustak, and R. Wyrzykowski. Model-based optimization of
eulag kernel on intel xeon phi through load imbalancing. IEEE Transactions on
Parallel and Distributed Systems, 28(3):787–797, 2016.

[24] Y. Lu, U. Benlic, Q. Wu, and B. Peng. Memetic algorithm for the multiple
traveling repairman problem with profits. Engineering Applications of Artificial
Intelligence, 80:35–47, 2019.

[25] Z. Luo, H. Qin, and A. Lim. Branch-and-price-and-cut for the multiple traveling
repairman problem with distance constraints. European Journal of Operational
Research, 234(1):49–60, 2014.

29

[26] M. Marelli, L. Bentivogli, M. Baroni, R. Bernardi, S. Menini, and R. Zamparelli.
SemEval-2014 task 1: Evaluation of compositional distributional semantic models
on full sentences through semantic relatedness and textual entailment. In Proceed-
ings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
pages 1–8, Dublin, Ireland, Aug. 2014. Association for Computational Linguistics.

[27] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the
traveling salesman problem. Citeseer, 1991.

[28] N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
operations research, 24(11):1097–1100, 1997.

[29] N. Mladenović, D. Urošević, and S. Hanafi. Variable neighborhood search for the
travelling deliveryman problem. 4OR, 11:57–73, 2013.

[30] Netstation acquisition technical manual. documentation, egi, 2011.
[31] I. Ome Ezzine and S. Elloumi. Polynomial formulation and heuristic based ap-

proach for the k-travelling repairman problem. International Journal of Mathe-
matics in Operational Research, 4(5):503–514, 2012.

[32] J. Pei, N. Mladenović, D. Urošević, J. Brimberg, and X. Liu. Solving the traveling
repairman problem with profits: A novel variable neighborhood search approach.
Information Sciences, 507:108–123, 2020.

[33] R. Rahman. Intel Xeon Phi coprocessor architecture and tools: the guide for
application developers. Apress, Berkely, CA, USA, 2013.

[34] L. Szustak. Strategy for data-flow synchronizations in stencil parallel com-
putations on multi-/manycore systems. The Journal of Supercomputing,
74(4):1534–1546, 2018.

[35] L. Szustak and P. Bratek. Performance portable parallel programming of het-
erogeneous stencils across shared-memory platforms with modern intel proces-
sors. The International Journal of High Performance Computing Applications,
33(3):534–553, 2019.

[36] M. Ungureanu, C. Bigan, R. Strungaru, and V. Lazarescu. Independent com-
ponent analysis applied in biomedical signal processing. Measurement Science
Review, 4(2):18, 2004.

[37] T. G. Will. Extremal results and algorithms for degree sequences of graphs. Uni-
versity of Illinois at Urbana-Champaign, 1993.

[38] G. M. Wojcik, J. Masiak, A. Kawiak, L. Kwasniewicz, P. Schneider, N. Polak,
and A. Gajos-Balinska. Mapping the human brain in frequency band analysis of
brain cortex electroencephalographic activity for selected psychiatric disorders.
Frontiers in Neuroinformatics, 12, 2018.

[39] G. M. Wojcik, J. Masiak, A. Kawiak, L. Kwasniewicz, P. Schneider, F. Postepski,
and A. Gajos-Balinska. Analysis of decision-making process using methods of
quantitative electroencephalography and machine learning tools. Frontiers in
Neuroinformatics, 13, 2019.

[40] G. M. Wojcik, J. Masiak, A. Kawiak, P. Schneider, L. Kwasniewicz, N. Polak,
and A. Gajos-Balinska. New protocol for quantitative analysis of brain cortex
electroencephalographic activity in patients with psychiatric disorders. Frontiers
in Neuroinformatics, 12, 2018.

[41] R. Wyrzykowski, L. Szustak, and K. Rojek. Parallelization of 2d mpdata eulag
algorithm on hybrid architectures with gpu accelerators. Parallel Computing,
40(8):425–447, 2014.

30

